RabbitMQ Management API Client

Documentation
Release 0.1

Alchemy

August 13, 2015

Contents

1 Introduction
2 Installation
3 Basic Usage

4 Guarantees
4.1 Probing a queue

42 Probinganexchange e e e e e e e e e
4.3 Ensure queue configuration L oL e e e e

5 Recipes
5.1 Monitor a queue

6 Handling Exceptions
7 Report a bug

8 Ask for a feature

9 Contribute

10 Run tests

11 About

12 License

[eclNoIENERN |

o

11

13

15

17

19

21

23

CHAPTER 1

Introduction

RabbitMQ Managemenet API Client is an object oriented PHP client for the RabbitMQ Management API provided
by the RabbitMQ Management Plugin

This library depends on Guzzle and Doctrine Common.

http://hg.rabbitmq.com/rabbitmq-management/raw-file/3646dee55e02/priv/www-api/help.html
http://www.rabbitmq.com/management.html
https://guzzlephp.org
https://github.com/doctrine/common

RabbitMQ Management API Client Documentation, Release 0.1

2 Chapter 1. Introduction

CHAPTER 2

Installation

We rely on composer to use this library. If you do no still use composer for your project, you can start with this

composer. json at the root of your project:

{
"require": {
"alchemy/rabbitmg-management—-client": "master"

}

Install composer :

Install composer

curl -s http://getcomposer.org/installer | php
Upgrade your install

php composer.phar install

You now just have to autoload the library to use it :

<?php
require 'vendor/autoload.php';

This is a very short intro to composer. If you ever experience an issue or want to know more about composer, you will

find help on their website http://getcomposer.org/.

http://getcomposer.org/
http://getcomposer.org/

RabbitMQ Management API Client Documentation, Release 0.1

4 Chapter 2. Installation

CHAPTER 3

Basic Usage

Here is a simple way to instantiate the APIClient an retrieve a queue :

<?php
use RabbitMQ\Management\APIClient;

$client = APIClient::factory(array('url'=>'localhost'));

$queue = $client->getQueue('/', 'queue.leuleu');

The APIClient factory requires the url option to build. Other available options are :
 scheme : The scheme to access the API endpoint (default to ‘http’)
e port : The port number of the API endpoint (default to ‘55672")
» username : The username to connect to the API endpoint (default to ‘guest’)
» password : The password to connect to the API endpoint (default to ‘guest’)

For all available methods, it is recommended to browse the API.

RabbitMQ Management API Client Documentation, Release 0.1

6 Chapter 3. Basic Usage

CHAPTER 4

Guarantees

What you probably want to do with this library is to ensure the RabbitMQ queues, exchanges and bindings settings.
This can be easily done with the Guarantee Component.

Guarantee will look in the configuration to find if what you ask for is already correctly set up and eventually fix it
if you ask for it.

4.1 Probing a queue

Let’s probe the status of a queue ; the probe will return one of the following constants :

* RabbitMQ\Management\Guarantee: :PROBE_RESULT_OK If the probed entity is set up
with

correct options - RabbitMQ\Management \Guarantee: : PROBE_RESULT_MISCONFIGURED If

the probed entity is set up with wrong options - RabbitMQ\Management \Guarantee: : PROBE_RESULT__ABSENT

if the probed entity is absent

<?php

use RabbitMQ\Management\APIClient;
use RabbitMQ\Management\Entity\Queue;
use RabbitMQ\Management\Guarantee;

Sclient = APIClient::factory(array('url'=>'localhost'));
Smanager = new Guarantee (Sclient);

Squeue = new Queue () ;
$queue->vhost = '/';
Squeue->name = 'queue.leuleu';
Squeue->durable = true;
Squeue->auto_delete = false;

Sstatus = S$manager—->probeQueue (Squeue) ;
switch ($status) {
case Guarantee::PROBE_ABSENT;
echo "The queue does not exists";
break;
case Guarantee: :PROBE_MISCONFIGURED;

echo "The queue exists but is not well configured";
break;

case Guarantee::PROBE_OK;

RabbitMQ Management API Client Documentation, Release 0.1

echo "The queue exists and is well configured";
break;

4.2 Probing an exchange

The same is available for exchanges :

<?php
use RabbitMQ\Management\Entity\Exchange;

Sexchange = new Exchange () ;

$exchange->vhost = '/';

Sexchange->name = 'exchange.dispatcher';
Sexchange->type = 'fanout';

Sstatus = $manager->probeExchange ($exchange);

4.3 Ensure queue configuration

Let’s now ensure a queue is set up as required :

<?php

use RabbitMQ\Management\APIClient;
use RabbitMQ\Management\Entity\Queue;
use RabbitMQ\Management\Guarantee;

Sclient = APIClient::factory(array('url'=>"localhost'));
Smanager = new Guarantee (Sclient);

Squeue = new Queue () ;
$queue->vhost = '/';
Squeue->name = 'queue.leuleu';
Squeue->durable = true;
Squeue->auto_delete = false;

// Will modify the queue if it is not configured yet
Smanager—->ensureQueue (Squeue) ;

Chapter 4. Guarantees

CHAPTER 5

Recipes

These recipes are samples of code you could re-use. Most of these are about guarantees that are also provided by the
Guarantee component.

5.1 Monitor a queue

<?php
use RabbitMQ\Management\Exception\EntityNotFoundException;
use RabbitMQ\Management\Entity\Queue;

try {

Squeue = Sclient->getQueue('/', 'queue.leuleu');

sprintf ("Queue contains %d messages", S$queue->messages);
sprintf ("Queue is idle since %s", Squeue->idle_since);

} catch (EntityNotFoundException Se) {
echo "The queue is not found";

RabbitMQ Management API Client Documentation, Release 0.1

10 Chapter 5. Recipes

CHAPTER 6

Handling Exceptions

RabbitMQ Management API Client throws 4 different types of exception :

* RabbitMQ\Management\Exception\EntityNotFoundException is thrown when an entity is not
found.

* RabbitMQ\Management\Exception\InvalidArgumentException is thrown when an invalid ar-
gument (name, vhost, ...) is provided

* RabbitMQ\Management \Exception\PreconditionFailedException isthrown when you try to
add an existing queue/exchange with different parameters (similar to HTTP 406).

* RabbitMQ\Management\Exception\RuntimeException which extends SPL RuntimeException

All these Exception implements RabbitMQ\Management \Exception\ExceptionInterface so you can
catch any of these exceptions by catching this exception interface.

11

RabbitMQ Management API Client Documentation, Release 0.1

12 Chapter 6. Handling Exceptions

CHAPTER 7

Report a bug

If you experience an issue, please report it in our issue tracker. Before reporting an issue, please be sure that it is not
already reported by browsing open issues.

13

https://github.com/alchemy-fr/RabbitMQ-Management-API-Client/issues

RabbitMQ Management API Client Documentation, Release 0.1

14 Chapter 7. Report a bug

CHAPTER 8

Ask for a feature

We would be glad you ask for a feature ! Feel free to add a feature request in the issues manager on GitHub !

15

https://github.com/alchemy-fr/RabbitMQ-Management-API-Client/issues

RabbitMQ Management API Client Documentation, Release 0.1

16 Chapter 8. Ask for a feature

CHAPTER 9

Contribute

You find a bug and resolved it ? You added a feature and want to share ? You found a typo in this doc and fixed it ?
Feel free to send a Pull Request on GitHub, we will be glad to merge your code.

17

http://help.github.com/send-pull-requests/

RabbitMQ Management API Client Documentation, Release 0.1

18 Chapter 9. Contribute

cHAPTER 10

Run tests

RabbitMQ Management Client relies on PHPUnit for unit tests. To run tests on your system, ensure you have PHPUnit
installed, and, at the root of the project, execute it :

‘phpunit

19

http://www.phpunit.de/manual/current/en/

RabbitMQ Management API Client Documentation, Release 0.1

20

Chapter 10. Run tests

CHAPTER 11

About

RabbitMQ Management Client has been written by Romain Neutron @ Alchemy for Gloubster.

21

http://alchemy.fr/
https://github.com/gloubster

RabbitMQ Management API Client Documentation, Release 0.1

22

Chapter 11. About

CHAPTER 12

License

RabbitMQ Management API client is licensed under the MIT License

23

http://opensource.org/licenses/MIT

	Introduction
	Installation
	Basic Usage
	Guarantees
	Probing a queue
	Probing an exchange
	Ensure queue configuration

	Recipes
	Monitor a queue

	Handling Exceptions
	Report a bug
	Ask for a feature
	Contribute
	Run tests
	About
	License

